Centers of n-Fold Tensor Products of Graphs

Sarah Bendall
and
Richard Hammack

Department of Mathematics
Randolph-Macon College
Ashland, Virginia 23005-5505, USA
rhammack@rmc.edu
sdw6z@cms.mail.virginia.edu

Abstract. Formulas for vertex eccentricity and radius for the n-fold tensor product $G = \bigotimes_{i=1}^{n} G_i$ of n arbitrary simple graphs G_i are derived. The center of G is characterized as the union of $n + 1$ vertex sets of form $V_1 \times V_2 \times \cdots \times V_n$, with $V_i \subseteq V(G_i)$.

2000 Mathematics Subject Classification. 05C12
Key words. tensor product of graphs, graph center

1 Introduction

The tensor product of two simple graphs $G_1 = (V(G_1), E(G_1))$ and $G_2 = (V(G_2), E(G_2))$ is the graph $G_1 \otimes G_2$ whose vertex set is $V(G_1) \times V(G_2)$, and whose edge set is $\{(x_1, x_2)(y_1, y_2) \mid x_1y_1 \in E(G_1) \text{ and } x_2y_2 \in E(G_2)\}$. The n-fold tensor product of simple graphs G_1, G_2, \ldots, G_n, denoted $\bigotimes_{i=1}^{n} G_i$, is the graph whose vertex set is $V(G_1) \times V(G_2) \times \cdots \times V(G_n)$, and whose edge set is $\{(x_1, x_2, \ldots, x_n)(y_1, y_2, \ldots, y_n) \mid x_1y_1 \in E(G_1), 1 \leq i \leq n\}$. This is equivalent to the inductive definition $\bigotimes_{i=1}^{n} G_i = \left(\bigotimes_{i=1}^{n-1} G_i\right) \otimes G_n$. In the literature, the tensor product is also called the Kronecker product, the categorical product, the direct product, or simply the product. See Section 5.3 of [3] for greater detail.

The eccentricity of a vertex x of a graph G is the maximum distance from x of a vertex y of G. The radius of G is the smallest eccentricity of the vertices of G. The center of G is the set of vertices whose eccentricity equals the radius of G. See [2] for a standard reference.

This article derives formulas which express vertex eccentricity and radius of an n-fold tensor product in terms of invariants of its factors. We also prove the center of such a graph is a union of $n + 1$ vertex sets of the form $V_1 \times V_2 \times \cdots \times V_n$, with $V_i \subseteq V(G_i)$.

Previously, Suh-Ryung Kim [4] treated the case of the tensor product of two graphs, one of which is bipartite. More recently, Abay-Asmerom and Hammack [1] solved the case involving the tensor product of two arbitrary graphs, but the formulas did not generalize to products with more than two factors. The present article solves the problem in complete generality, and the results of [4] and [1] become corollaries and special cases. Moreover, the formulas from [1] are greatly simplified under our approach.
2 Distance in a Tensor Product

This section reviews the notion of distance in a graph, and derives a few results concerning distance in a tensor product. The discussion is phrased in the language of walks.

Recall that a walk in G is a sequence of vertices $W = w_0w_1w_2\cdots w_m$, where any two consecutive vertices are adjacent, and form an edge of the walk. A walk is regarded as a traversal of its edges in a specified order. The length of W, denoted by $|W|$, is the number of edges in the walk (with the understanding that an edge may appear and be counted multiple times). A trivial walk consists of a single vertex, and has length 0. Two walks have the same parity if the difference of their lengths is even; otherwise they have opposite parity. A walk W and an integer q have the same (or opposite) parity if $|W| - q$ is even (or odd). An even (odd) walk is one whose length is even (odd). A walk that begins at vertex x and ends at vertex y is called an x-y walk.

The distance between two vertices x and y of a graph G, denoted by $d_G(x, y)$, is the length of the shortest x-y walk in G, or ∞ if no such walk exists. The upper distance between x and y, denoted $D_G(x, y)$, is the minimum length of an x-y walk whose parity differs from that of $d_G(x, y)$. If G is bipartite or trivial, then no such walk exists, and we say $D_G(x, y) = \infty$. Likewise, $D_G(x, y) = \infty$ if x and y happen to be in different components of G. Note that if G is connected and contains an odd cycle, then $D_G(x, y)$ must be finite. For example, in Figure 1, $d_G(a, d) = 2$, $D_G(a, d) = 3$, $d_G(a, a) = 0$, and $D_G(a, a) = 5$. Notice that D_G is not a distance function, as, in particular, $D_G(x, x) > 0$. The notion of upper distance, as well as the definitions in the next paragraph, first appeared in [1].

An x-y walk W in a graph G is called minimal if $|W| = d_G(x, y)$, and it is called slack if $d_G(x, y) < |W| < D_G(x, y)$. It is called critical if $|W| = D_G(x, y)$, and ample if $D_G(x, y) < |W|$. For example, if G is the 5-cycle $abceda$, the walk ab is minimal, and $aecedb$ is critical. The walk $abcb$ is slack, and $abccbeb$ is ample. Notice that any minimal walk is necessarily a path. Observe also that any walk in a bipartite graph is either minimal or slack – it can be neither critical nor ample. The following observation, which follows from the above definitions, is used frequently.

Observation 1: An x-y walk W is minimal if and only if there exist no shorter x-y walks. An x-y walk W is slack if and only if there exist shorter x-y walks, and all such shorter walks have the same parity as W. An x-y walk W is critical if and only if there exist shorter x-y walks, and all such walks have a parity different than that of W. An x-y walk W is ample if and only if there exist shorter x-y walks of both parities.

The following lemma will help prove our main results.

Lemma 1: Any subwalk of a critical walk is either minimal or critical.

Proof. Suppose the x-y walk X is a subwalk of a critical w-z walk W. Then $W =AXB$ for (possibly trivial) walks A and B. If X is minimal, there is nothing to prove, so suppose X is not minimal. Let Y be an x-y walk that is shorter than X. If we can show the parity of Y must differ from that of X, then (by Observation 1) X must be critical. But this is clear. For if Y had the same parity as X, then AYB would be a shorter w-z walk than W, yet it would have the same parity as X, contradicting the fact that W is critical. ■

If each factor G_i in $G = \otimes_{i=1}^n G_i$ has a walk $W_i = w_{i0}w_{i1}w_{i2}\cdots w_{im}$ of length m, we denote by $W_1 \otimes W_2 \otimes \cdots \otimes W_n = \otimes_{i=1}^n W_i$ the walk $(w_{10}, w_{20}, \ldots, w_{n0}) (w_{11}, w_{21}, \ldots, w_{n1}) (w_{12}, w_{22}, \ldots, w_{n2}) \cdots (w_{1m}, w_{2m}, \ldots, w_{nm})$ in G. Notice that any walk of length m in G can be written uniquely as $\otimes_{i=1}^n W_i$, for appropriate walks W_i in G_i, all of length m.

Next, we present two lemmas concerning distance in an n-fold tensor product. These lemmas are generalizations to n factors of results that appeared in [1]. See [4] and [5] for
another approach to distance in a tensor product.

Lemma 2: Let \(x = (x_1, x_2, \ldots, x_n) \) and \(y = (y_1, y_2, \ldots, y_n) \) be two vertices of \(G = \bigotimes_{i=1}^n G_i \) and suppose each factor \(G_i \) has a nontrivial \(x_i-y_i \) walk \(W_i \). If all walks \(W_i \) have the same parity, then \(d_G(x, y) \leq \max\{|W_i| \mid 1 \leq i \leq n\} \).

Proof. For each integer \(1 \leq i \leq n \), denote the walk \(W_i \) as \(x_i x_1 x_2 x_3 \cdots x_{im_i} y_i \). Choose an integer \(k \), \(1 \leq k \leq n \), for which \(|W_k| = \max\{|W_i| \mid 1 \leq i \leq n\} \). For each \(i \neq k \), the \(x_i-y_i \) walk \(W_i \) can be extended to an \(x_i-y_i \) walk \(\tilde{W}_i \) of length \(|W_k| \) by appending to its end the even walk \(y_i x_{im_i} y_i x_{im_i} y_i \cdots x_{im_i} y_i \) of length \(|W_k| - |W_i| \). Then \(\bigotimes_{i=k+1}^{k-1} \tilde{W}_i \otimes W_k \) is a shorter \(x-y \) walk of length \(|W_k| \) in \(G \). Hence \(d_G(x, y) \leq |W_k| = \max\{|W_i| \mid 1 \leq i \leq n\} \).

Lemma 3: Let \(x = (x_1, x_2, \ldots, x_n) \) and \(y = (y_1, y_2, \ldots, y_n) \) be two vertices of \(G = \bigotimes_{i=1}^n G_i \). If there is no integer \(m \) for which each \(G_i \) has an \(x_i-y_i \) walk of length \(m \), then \(d_G(x, y) = \infty \). Otherwise, \(d_G(x, y) = \min\{m \in \mathbb{N} \mid \text{each } G_i \text{ has an } x_i-y_i \text{ walk of length } m\} \).

Proof. If there is no integer \(m \) for which each \(G_i \) has an \(x_i-y_i \) walk of length \(m \), then there can be no \(x-y \) walk \(W \) in \(G \), for such a walk would necessarily have the form \(W = \bigotimes_{i=1}^n W_i \) with each \(W_i \) an \(x_i-y_i \) walk of length \(m = |W| \). Hence \(d_G(x, y) = \infty \).

Now suppose there is some integer \(m \) for which each \(G_i \) has an \(x_i-y_i \) walk \(W_i \) of length \(m \). Set \(M = \min\{m \in \mathbb{N} \mid \text{each } G_i \text{ has an } x_i-y_i \text{ walk of length } m\} \). Let \(W = \bigotimes_{i=1}^n W_i \) be an \(x-y \) walk of length \(d_G(x, y) \) in \(G \). Then each \(W_i \) is an \(x_i-y_i \) walk of length \(m = d_G(x, y) \), so \(d_G(x, y) \geq M \). It follows \(d_G(x, y) = M \).

The next result is our primary tool for constructing minimal walks in tensor products.

Proposition 1: A walk \(W = \bigotimes_{i=1}^n W_i \) in the graph \(G = \bigotimes_{i=1}^n G_i \) is minimal if and only if one factor \(W_i \) is minimal, or one factor is slack and another factor is critical.

Proof. Say \(W \) begins at \(x = (x_1, x_2, \cdots, x_n) \) and ends at \(y = (y_1, y_2, \cdots, y_n) \), so each \(W_i \) is an \(x_i-y_i \) walk in \(G_i \).

Suppose \(W \) is minimal. First, suppose to the contrary that no factor of \(W \) were minimal and no factor were slack. Then each factor \(W_i \) would be critical or ample, so for each \(1 \leq i \leq n \) there would be a shorter \(x_i-y_i \) walk than \(W_i \). We could assume all these shorter walks had the same parity – the parity opposite to \(|W|\) if \(W \) had any critical factors, or either parity if all factors were ample. Then by Lemma 2 would contradict the minimality of \(W \).

Now suppose that no factor of \(W \) were minimal and no factor were critical. Then each factor \(W_i \) would be slack or ample, so for each \(1 \leq i \leq n \) there would be a shorter \(x_i-y_i \) walk than \(W_i \). We could assume all these shorter walks had the same parity – the same parity as \(|W|\) if \(W \) had any slack factors, or either parity if all factors were ample. But then Lemma 2 would contradict the minimality of \(W \).

The previous two paragraphs show that if \(W \) is minimal, then one factor of \(W \) is minimal, or one factor is slack and another is critical.

Conversely, suppose that one factor of \(W \) is minimal, or one factor is slack and another factor is critical. If one factor is minimal, then \(W \) is minimal by Lemma 3. Next suppose that one factor \(W_k \) is slack and another factor \(W_l \) is critical. Then any \(x_k-y_k \) walk in \(G_k \) that is shorter than \(W_k \) has the same parity as \(W_k \), while any \(x_l-y_l \) walk in \(G_l \) that is shorter than \(W_l \) has the opposite parity to \(W_l \). As \(|W_k| = |W_l|\), we conclude there is no integer \(m < |W_k| = |W_l| \) for which there are \(x_k-y_k \) and \(x_l-y_l \) walks of length \(m \). Then \(W \) is minimal by Lemma 3.
3 Eccentricity and Centers

The eccentricity of \(x \in V(G) \) is \(e_G(x) = \max\{d_G(x,y) | y \in V(G)\} \). The upper eccentricity of \(x \) is \(E_G(x) = \max\{D_G(x,y) | y \in V(G)\} \). Notice that \(E_G(x) = \infty \) if and only if \(G \) is disconnected, bipartite, or trivial. As an illustration of these ideas, each vertex \(x \) of the graph \(G \) in Figure 1 is labeled with an ordered pair \((e_G(x), E_G(x))\).

![Graph G](image)

Figure 1

The radius of \(G \) is \(r(G) = \min\{e_G(x) | x \in V(G)\} \), and the upper radius is \(R(G) = \min\{E_G(x) | x \in V(G)\} \). For example, in Figure 1, \(r(G) = 1 \), and \(R(G) = 3 \).

Recall that the center of \(G \) is the subset of \(V(G) \) consisting of all vertices \(x \) for which \(e_G(x) = r(G) \). For example, the center of the graph \(G \) in Figure 1 consists of the single vertex \(b \). Consideration of the upper eccentricity and radii in the factors of an \(n \)-fold tensor product will be instrumental in characterizing its center.

4 Results

Now we can compute the eccentricity of a vertex in an \(n \)-fold tensor product, and also find the radius and center of such a graph. This is done in Theorems 1, 2 and 3 below. These theorems involve a function \(\mu \), defined as follows. If \(X \) is a finite multiset with elements in \(\mathbb{N} \cup \{\infty\} \), then

\[
\mu(X) = \begin{cases}
\max(X - \{\max(X)\}) & \text{if } \max(X) \text{ has multiplicity 1} \\
\max(X) - 1 & \text{otherwise.}
\end{cases}
\]

In words, \(\mu \) selects the second-largest element of \(X \), unless \(X \) contains more than one largest element, in which case \(\mu \) returns one less than the largest elements. As examples, \(\mu(\{3, 6, 4, 9\}) = 6, \mu(\{2, 7, 7, \infty, \}) = 7, \mu(\{2, 4, 7, 7\}) = 6, \) and \(\mu(\{2, 4, \infty, \infty\}) = \infty \).

Theorem 1: If no factor of \(G = \bigotimes_{i=1}^{n} G_i \) is trivial, and \(x = (x_1, x_2, \cdots, x_n) \in V(G) \), then \(e_G(x_1, x_2, \cdots, x_n) = \mu(\{e_{G_i}(x_i), E_{G_i}(x_i) | 1 \leq i \leq n\}) \).

Proof. For brevity, set \(M = \mu(\{e_{G_i}(x_i), E_{G_i}(x_i) | 1 \leq i \leq n\}) \).

First, we establish \(e_G(x) \leq M \). For this it suffices to show any minimal walk \(W = \bigotimes_{i=1}^{n} W_i \) in \(G \), beginning at \(x \), satisfies \(|W| \leq M \). If \(W \) is such a walk, then, by Proposition 1, one factor of \(W \) is minimal or one is slack and another is critical. If some factor \(W_a \) is minimal, then, since it begins at \(x_a \), we have \(|W| = |W_a| \leq e_{G_a}(x_a) \leq M \), by definition of \(M \). If \(W_a \) is slack and \(W_b \) is critical, then \(|W| = |W_a| < E_{G_a}(x_a) \) and \(|W| = |W_b| \leq E_{G_b}(x_b) \). It follows that \(|W| \) is smaller than the largest element of \(\{E_{G_i}(x_i) | 1 \leq i \leq n\} \), yet it is not larger than the second-largest element. Then \(|W| \leq M \), by definition of \(M \). This completes the proof that \(e_G(x) \leq M \).

The rest of the proof is devoted to showing \(e_G(x) \geq M \). Certainly this is true if \(G \) is disconnected, for then \(e_G(x) = \infty \geq M \). So we may assume henceforward that \(G \) is connected. This means every factor \(G_i \) is connected and at most one factor is bipartite (c.f.
Choose indices $1 \leq a, b \leq n$ for which $E_{G_a}(x_b)$ is the largest element of the multiset \(\{ E_{G_i}(x_i) \mid 1 \leq i \leq n \} \), and $E_{G_a}(x_a)$ is the largest of the remaining elements once $E_{G_a}(x_b)$ has been removed. Thus $E_{G_a}(x_a) \leq E_{G_a}(x_b)$. Since $E_{G_i}(x_i) = \infty$ if and only if G_i is bipartite, it follows G_b is the only factor of G that can be bipartite, and, if it is, then $E_{G_b}(x_b) = \infty$ and $E_{G_a}(x_a)$ is finite.

For each $1 \leq i \leq n$, with $i \neq a, b$, let W_i be any walk in G_i that begins at x_i and has length M. (Such walks exist because each G_i is connected and nontrivial.) We are going to find walks W_a and W_b of length M for which Proposition 1 implies the walk $\bigotimes_{i=1}^{n} W_i$ of length M beginning at x is minimal. For the rest of the proof, let Z_a be a critical x_a-z_a walk of length $E_{G_a}(x_a)$ in G_a. Let Y_a be a minimal x_a-z_a walk in G_a. We consider three exhaustive cases.

Case 1. $E_{G_a}(x_a) < E_{G_b}(x_b) = \infty$. This is the case where G_b is bipartite. In the expression for M, the function μ disregards the largest value of $E_{G_b}(x_b) = \infty$ and selects the largest of the remaining values of $\{ e_{G_i}(x_i), E_{G_i}(x_i) \mid 1 \leq i \leq n \}$. Since $e_{G_i}(x_i) < E_{G_i}(x_i)$ for each i, it follows that $M = \max \{ e_{G_i}(x_b), E_{G_a}(x_a) \}$. We consider the cases $M = E_{G_a}(x_a)$ and $M = e_{G_i}(x_b)$ separately. First suppose $M = E_{G_a}(x_a)$. Let W_a be the critical walk Z_a of length $E_{G_a}(x_a) = M$, and let W_b be an arbitrary walk in G_b beginning at x_b and having length M. Then W_b is either minimal or slack because G_b is bipartite. The walk $\bigotimes_{i=1}^{n} W_i$ begins at x, has length M, and is minimal by Proposition 1. Next suppose $M = e_{G_i}(x_b)$. Let W_b be a minimal walk in G_b beginning at x_b and having length M. Then the walk $\bigotimes_{i=1}^{n} W_i$ begins at x, has length M, and is minimal by Proposition 1.

This takes care of the case where the factor G_b of G is bipartite, so $E_{G_a}(x_b)$ is finite for the rest of the proof. Let Z_b be a critical x_b-z_b walk of length $E_{G_b}(x_b)$ in G_b, and denote the last edge in Z_b as $y_b z_b$. Let Y_b be a minimal x_b-z_b walk in G_b.

Case 2. $E_{G_a}(x_a) < E_{G_b}(x_b) < \infty$. As in the previous case, $M = \max \{ e_{G_i}(x_b), E_{G_a}(x_a) \}$, and, as in that case, if $M = e_{G_i}(x_b)$ there is a minimal walk in G_i beginning at x and having length M. Thus suppose $M = E_{G_a}(x_a)$, so $e_{G_i}(x_b) \leq E_{G_a}(x_a) < E_{G_b}(x_b)$. Let W_a be the critical walk Z_a of length $E_{G_a}(x_a) = M$. Then since Y_b is minimal and begins at x_b, we have $|Y_b| \leq e_{G_i}(x_b) \leq E_{G_a}(x_a) = |W_a|$. If the integer $k = |W_a| - |Y_b|$ is even, extend Y_b to a walk W_b of length M by appending to its end the even walk $z_b y_b z_b y_b \cdots y_b z_b$ of length k. Then the x_b-z_b walk W_b is minimal or slack because $|W_b| = |W_a| = E_{G_a}(x_a) < E_{G_b}(x_b) = D_{G_b}(x_b, z_b)$. Then the walk $\bigotimes_{i=1}^{n} W_i$ begins at x, has length M, and is minimal by Proposition 1.

On the other hand, if k is odd, extend Y_b to a x_b-y_b walk W_b of length M by appending to its end the odd walk $z_b y_b z_b y_b \cdots z_b y_b$ of length k. If we can show that W_b is minimal or slack, then $\bigotimes_{i=1}^{n} W_i$ will be the required minimal walk of length M beginning at x.

Now, the parity of Y_b is opposite to that of W_a (since k is odd) it is also opposite to Z_b by construction. Therefore $|W_a| = E_{G_a}(x_a)$ and $|Z_b| = E_{G_b}(x_b)$ have the same parity, and as the former is smaller that the latter we infer $E_{G_a}(x_a) < E_{G_b}(x_b) - 1$. And, since $e_{G_i}(x_b) \leq E_{G_a}(x_a)$, we get $e_{G_a}(x_b) < E_{G_a}(x_b) - 1$. Let X_b be the walk Z_b with its last edge $y_b z_b$ removed. By Lemma 1, X_b is either minimal or critical. But it cannot be minimal, for then $e_{G_b}(x_b) \geq d_{G_b}(z_b, y_b) = |X_b| = |Z_b| - 1 = E_{G_b}(x_b) - 1$, contradicting the above inequality. Therefore X_b is a critical x_b-y_b walk, so $|X_b| = D_{G_b}(x_b, y_b)$. But this means W_b is a minimal or slack x_b-y_b walk since $|W_b| = |W_a| = E_{G_a}(x_a) < E_{G_b}(x_b) - 1 = |X_b| = D_{G_b}(x_b, y_b)$.

Theorem 5.29 of [3]). To show $e_G(x) \geq M$, it suffices to construct a minimal walk W in G beginning at x, and satisfying $|W| = M$. The rest of the proof is a construction of such a walk.
Case 3. $E_{G_b}(x_a) = E_{G_b}(x_b) < \infty$. In this case, $M = E_{G_b}(x_b) - 1$ by definition of M. Let W_b be the walk Z_b with its last edge $y_b z_b$ removed, so $|W_b| = E_{G_b}(x_b) - 1 = M$, and W_b is either minimal or critical by Lemma 1. By construction, W_b and Y_a have the same parity (namely that opposite of $|Z_a| = |Z_b|$), and $|Y_a| \leq E_{G_a}(x_a) - 1 = |W_b|$. Extend Y_a to a $x_a z_a$ walk W_a of length M by appending to its end an even walk $z_a y_a z_a y_a \cdots y_a z_a$ of length $|W_b| - |Y_a|$. Then W_a is a minimal or slack $x_a z_a$ walk because $|W_a| = |W_b| = E_{G_b}(x_b) - 1 < E_{G_a}(x_a) = E_{G_a}(x_a) = D_{G_a}(x_a, z_a)$. The walk $\bigotimes_{i=1}^{n} W_i$ begins at x, has length M, and is minimal by Proposition 1. The proof is complete.

Theorem 2: If every factor of $G = \bigotimes_{i=1}^{n} G_i$ is nontrivial, then G has radius $r(G) = \mu(\{r(G_i), R(G_i)\} | 1 \leq i \leq n\})$.

Proof. Choose a vertex $x = (x_1, x_2, \cdots, x_n)$ of G with the property that $r(G) = e_G(x)$. Using Theorem 1, $e_G(x) = r(G) = \mu(\{e_{G_i}(x_i), E_{G_i}(x_i) | 1 \leq i \leq n\}) \geq \mu(\{r(G_i), R(G_i) | 1 \leq i \leq n\})$.

To establish the reverse inequality, let $R(G_a) \leq R(G_b)$ be the two largest upper radii in the multiset $\{R(G_i) | 1 \leq i \leq n\}$, and consider the following two cases.

If $R(G_a) = R(G_b)$, then for each $1 \leq i \leq n$, choose $x_i \in V(G_i)$ for which $E_{G_i}(x_i) = R(G_i)$. Then $E_{G_a}(x_a) = E_{G_b}(x_b)$ are the largest elements in the multiset $\{e_{G_i}(x_i), E_{G_i}(x_i) | 1 \leq i \leq n\}$. Thus $r(G) \leq e_{G_1}(x_1) + e_{G_2}(x_2) + \cdots + e_{G_n}(x_n) = \mu(\{e_{G_i}(x_i), E_{G_i}(x_i) | 1 \leq i \leq n\}) = E_{G_a}(x_a) - 1 = R(G_a) - 1 = \mu(\{r(G_i), R(G_i) | 1 \leq i \leq n\})$.

If $R(G_a) < R(G_b)$, choose $x_b \in V(G_b)$ for which $E_{G_b}(x_b) = r(G_b)$, and for $i \neq b$ take $x_i \in V(G_i)$ for which $E_{G_i}(x_i) = R(G_i)$. Then for $i \neq b$ we have $E_{G_i}(x_i) = R(G_i) \leq R(G_a) < R(G_b) \leq E_{G_b}(x_b)$. Thus $E_{G_a}(x_a)$ is the sole largest element of the multiset $\{e_{G_i}(x_i), E_{G_i}(x_i) | 1 \leq i \leq n\}$, and the second-largest is either $e_{G_b}(x_b) = r(G_b)$ or $E_{G_a}(x_a) = R(G_a)$. Hence $r(G) \leq e_{G_1}(x_1) + e_{G_2}(x_2) + \cdots + e_{G_n}(x_n) = \mu(\{e_{G_i}(x_i), E_{G_i}(x_i) | 1 \leq i \leq n\}) = \max\{e_{G_b}(x_b), E_{G_a}(x_a)\} = \max\{r(G_b), R(G_a)\} = \mu(\{r(G_i), R(G_i) | 1 \leq i \leq n\})$.

The next theorem is an explicit description of the center of $G = \bigotimes_{i=1}^{n} G_i$. To set the stage, for each $1 \leq i \leq n$, define the following sets.

$$X_i = \{x \in V(G_i) | E_{G_i}(x) \leq r(G)\},$$
$$\overline{X}_i = \{x \in V(G_i) | E_{G_i}(x) \leq r(G) + 1\},$$
$$\tilde{X}_i = \{x \in V(G_i) | e_{G_i}(x) \leq r(G)\}.$$

Observe that these sets are nested in the fashion $X_i \subseteq \overline{X}_i \subseteq \tilde{X}_i$.

Theorem 3: The center of $G = \bigotimes_{i=1}^{n} G_i$ is the following union of $n + 1$ vertex sets:

$$\overline{X}_1 \times \overline{X}_2 \times \cdots \times \overline{X}_n \cup (\tilde{X}_1 \times \tilde{X}_2 \times \cdots \times \tilde{X}_n) \cup (X_1 \times \tilde{X}_2 \times \cdots \times \tilde{X}_n) \cup \cdots \cup (X_1 \times X_2 \times \cdots \times X_n).$$

Proof. We first verify that each set in the above union is in the center of G. For this it suffices to show that if vertex $x = (x_1, x_2, \cdots, x_n)$ is in one of these sets, then $e_G(x) \leq r(G)$.

If $x \in \overline{X}_1 \times \overline{X}_2 \times \cdots \times \overline{X}_n$, then $E_{G_i}(x_i) \leq r(G) + 1$, for $1 \leq i \leq n$, and since $e_{G_i}(x_i) < E_{G_i}(x_i)$, it follows that $e_{G_i}(x_i) \leq r(G)$ for each i. Consequently, Theorem 1 gives $e_G(x) = \mu(\{e_{G_i}(x_i), E_{G_i}(x_i) | 1 \leq i \leq n\}) \leq r(G)$, since μ of a multiset is always less than its largest element, and in this case the largest element is at most $r(G) + 1$.

If $x \in X_1 \times X_2 \times \cdots \times \tilde{X}_k \times \cdots \times X_n$, then $e_{G_k}(x_k) \leq r(G)$ and $e_{G_i}(x_i) < E_{G_i}(x_i) \leq r(G)$ for $i \neq k$. Thus no element in the multiset $\{e_{G_i}(x_i), E_{G_i}(x_i) | 1 \leq i \leq n\}$ is greater than $r(G)$, with the possible exception of $E_{G_k}(x_k)$. By Theorem 1 and definition of M it follows that $e_G(x) = \mu(\{e_{G_i}(x_i), E_{G_i}(x_i) | 1 \leq i \leq n\}) \leq r(G)$.

Next, suppose x is in the center of G, so $e_G(x) = r(G)$. Let $E_{G_a}(x_a) \leq E_{G_b}(x_b)$ be the two largest upper eccentricities in the multiset $\{E_{G_i}(x_i) | 1 \leq i \leq n\}$.

6
If $E_{G_a}(x_a) = E_{G_b}(x_b)$, then $r(G) = e_G(x) = \mu\{e_{G_i}(x_i), E_{G_i}(x_i)|1 \leq i \leq n\} = E_{G_a}(x_a) - 1$. This means $E_{G_s}(x_s) \leq E_{G_a}(x_a) \leq r(G) + 1$ for $1 \leq i \leq n$, so $x \in \overline{X}_1 \times \overline{X}_2 \times \cdots \times \overline{X}_n$.

On the other hand, suppose $E_{G_a}(x_a) < E_{G_b}(x_b)$. Then using Theorem 1, $r(G) = e_G(x) = \mu\{e_{G_i}(x_i), E_{G_i}(x_i)|1 \leq i \leq n\}$. But μ will ignore the largest value of $E_{G_i}(x_b)$ and pick the largest of the remaining values. Hence

$$r(G) = \max\{e_{G_1}(x_1), E_{G_2}(x_2), \cdots, E_{G_{b-1}}(x_{b-1}), e_{G_b}(x_b), E_{G_{b+1}}(x_{b+1}), \cdots, E_{G_n}(x_n)\}.$$

It follows that $e_{G_a}(x_b) \leq r(G)$, and $E_{G_i}(x_i) \leq r(G)$ for $i \neq b$. This means $x \in X_1 \times X_2 \times \cdots \times \overline{X}_b \times \cdots \times X_n$.

As an illustration of Theorem 3, Figure 2 is a schematic diagram of the center of a 3-fold tensor product. The central box $\overline{X}_1 \times \overline{X}_2 \times \overline{X}_3$ is intersected by three transversal boxes $\overline{X}_1 \times X_2 \times X_3$, $X_1 \times \overline{X}_2 \times X_3$, and $X_1 \times X_2 \times \overline{X}_3$.

![Figure 2](image)

Theorems 1, 2, and 3 simplify greatly if one or more factors of the tensor product is bipartite or disconnected. Of course, if one factor is disconnected or if more than one factor of is bipartite, then G is disconnected, and its radius and all its vertex eccentricities are infinite. Moreover, $X_i = \overline{X}_i = V(G_i)$ in such cases, and Theorems 1, 2 and 3 give the expected result that the eccentricities and radius are infinite and every vertex of G is central. That is not particularly interesting. What is interesting is the case where exactly one of the factors, say G_1, is bipartite, while all other factors are connected and have odd cycles. In this situation $E_{G_1}(x_1) = \infty$, while $E_{G_i}(x_i)$ is finite when $1 < i \leq n$. In Theorem 1, μ disregards the largest value of $E_{G_1}(x_1) = \infty$ and selects the largest of the remaining finite values. Theorem 1 thus becomes $e_G(x_1, x_2, \cdots, x_n) = \max\{E_{G_1}(x_1), E_{G_2}(x_2), E_{G_3}(x_3), \cdots, E_{G_n}(x_n)\}$. Theorem 2 reduces to $r(G) = \max\{r(G_1), R(G_2), R(G_3), \cdots, R(G_n)\}$, and in Theorem 3, $X_1 = \overline{X}_1 = \emptyset$. These observations prove the following.

Corollary 1: Suppose every factor of $G = \bigotimes_{i=1}^n G_i$ is connected, and G_1 is bipartite, while all other factors have odd cycles. Then for any vertex $x = (x_1, x_2, \cdots, x_n)$ of G, $e_G(x) = \max\{e_{G_1}(x_1), E_{G_2}(x_2), E_{G_3}(x_3), \cdots, E_{G_n}(x_n)\}$. Also G has radius $r(G) = \max\{r(G_1), R(G_2), R(G_3), \cdots, R(G_n)\}$. Moreover, the center of G is the vertex set $\overline{X}_1 \times X_2 \times X_3 \times \cdots \times X_n$.

5 Conclusion

Given the relative simplicity of Corollary 1, it is perhaps not surprising that the earliest result [4] concerning centers of tensor products deals only with the product of two graphs, one of which is bipartite. We close with a comparison of our theorems with this result, and also with the work of Abay-Asmerom and Hammack.
Kim [4] defines $d_e(a, b)$ and $d_o(a, b)$ to be the lengths of the shortest $a-b$ walks of even and odd lengths, respectively, in a graph G. The double eccentricity of a vertex a of G is defined to be $de_G(a) = \max\{d_e(a, b), d_o(a, b) \mid b \in V(G)\}$, and the double radius is defined to be $dr(G) = \min\{de_G(a) \mid a \in V(G)\}$. Kim proves that if G is bipartite, then $e_{G \otimes H}(a, x) = \max\{e_G(a), e_H(x)\}$, and (a, x) is in the center of $G \otimes H$ if and only if $e_{G \otimes H}(a, x) = \max\{r(G), dr(H)\}$ (i.e. that $r(G \otimes H) = \max\{r(G), dr(H)\}$). Simply observe $de_G(a) = E_G(a)$, and $dr(G) = R(G)$, and these results are our Corollary 1 for the case $n = 2$.

Abay-Asmerom and Hammack’s general approach [1] for two factors works as follows. They define $E^0_G(a)$ and $E^1_G(a)$ to be the lengths of the longest critical $a-b$ walks in G of even and odd parity, respectively. They define $R^0(G) = \min\{E^0_G(a) \mid a \in V(G)\}$ and $R^1(G) = \min\{E^1_G(a) \mid a \in V(G)\}$. With these definitions they prove $e_{G \otimes H}(a, x) = \max\{e_G(a), e_H(x), \min\{E^0_G(a), E^1_H(x)\}, \min\{E^1_G(a), E^0_H(x)\}\}$ and, moreover, $r(G \otimes H) = \max\{r(G), r(H), \min\{R^0(G), R^1(H)\}, \min\{R^1(G), R^0(H)\}\}$. Although these formulas agree with our Theorems 1 and 2, they are unnecessarily complicated, and worse, they do not generalize to tensor products with more than two factors. The function μ in the present article not only simplifies these expressions, it allows for their generalization to n factors.

References

